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Minimax Subset Selection for
Loss Measured by Subset Size

1. INTRODUCTION. A subset selection problem may be formulated as a multiple

decision problem. The distinguishing feature of a subset selection problem is

the goal of determining in which of k partition sets of the parameter space

the true parameter lies. In subset selection problems , attention is usually

restricted to rules which insure a certain minimum probability, P , of making

a correct decision. Restricting attention to these rules, minimaxity is

investigated for loss measured by subset size and number of non-best populations

selected . The minimax values are found to be kP and (k-1)P , respectively,

under general conditions involving only the topological structure of the

parameter space and the continuity of certain functions of the paramcter.

These results include problems involving nuisance parameters and (possibly

unequal) sample sizes greater than one. Using these results, rules proposed

by Gupta (1965) are found to be minima.x in location and scale parameter

problems when the populations are independent and the densi ave monotone

likelihood ratio. Other rules, proposed for selection in te~n~ ~f binomial and

multinomial probabilities and multivariate non-centrality parameters, are

shown to be not minimax. A class of rules, proposed by Seal (1955) for the

location parameter problem, is also investigated. For certain values of k

and P , rules in this class are shown to be not mi.nimax.

2. MULTIPLE DECISION ThEORY FORMULATION. A subset selection problem may be

formulated as a multiple decision theory problem. The specific choice of the

action space sets the subset selection problem apart from other multiple

decision theory prob lems.

~~~~~~~~~~~~~~~~~~~~~~~~
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The sample space Xis a subset of q-dimensional Euclidean space

The parameter space 6 is a subset of ERr. The observation X = (Xi,. ,X~)

• is a random vector with cuirulative distribution function (c.d.f.) F(x;O).

It is assumed that there exists a partition of € denoted by {€
~
: i=l ,...,k}

(k > 2). Often this partition is determined by the largest or smallest

coordinate of (some subset of) the parameter. If a particular parameter point

could be placed in more than one set of this partition, e.g., two coordinates

of the parameter are tied as largest, then the point is arbitrarily put in one

• of the sets. This is done so the partition is well defined and , in some

problems , this insures the continuity of the risk functions . The general goal

of a subset selection problem is to determine, based on the observation,

which of the k partition sets contains the true parameter. The action space Q

consists of the 2k_ 1 non-empty subsets of {7r 1,. . 
~~~ 

where IT , is the statement

9c€~. So the action L 1,~2 } corresponds to the decision Oc61U€2 . The

correspond to what have been called populations in the earlier subset selection

literature. In this terminology, for a given 0, the “best population” is the

one true and the other (k-i) 711’s are the “non-best populations.” So a

statement like,”the best population is the one associated with the largest

parameter value,” means €. = {e: = max 0.) (with the exception that if ~ is1

tied with other 0.’s as the largest, that parameter point may not be in

By not assuming equality of k, q and r, this formulation covers problems

involving nuisance parameters and (possibly unequal) sample sizes greater

than one. The a-field associated with the sets .Z ,6 and (& will be the discrete

a-field if the set is countable and the Borel a-field if the set is uncountable.—

~~~~~~~~~~
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A measurable function, S: bx G-.~ [0,11, is called a selection rule

• provided that, for each x c ~~, EiS(x,a) = 1. &(x,a) is the probability of
C

selecting subset a having observed x. The k functions defined by q~(x)

6(x,a) are the individual selection p~pbabilities. q.(x) is the
{a:1r.ca} 1

1

probability of including i~~ in the selected subset having observed x. A

selection rule is not , in general, completely determined by its individual

selection probabilities (see Nagel (1970), Example 1.2.1). But the risk of

any rule, for losses defined in terms of the quantities (2.3), can be computed

in terms of the individual selection probabilities. For this reason, any two

rules which have the sane individual selection probabilities shall be considered

equivalent.

The selection of any subset which contains the best population is called

a correct selection, denoted by CS. Let P be any pre-assigned fixed number
*

such that 1/k < P < 1. It has been traditional in the literature to consider
*

only selection rules which satisfy the P -condition, viz.,

(2.1) inf P9(CS(~) 
> P .

This is obviously equivalent to the following k inequalities being satisfied ,

(2.2) inf E0cp.(X) = inf P0(select rr. tcp ) > p i=l ,...,k.
6. 6. — 

1
1 1

The set of all selection rules which satisfy the P -condition is denoted by

Having insured a high probability of correct selection through the

P -condition , one would prefer a rule which selects small subsets , that is ,

a rule which rejects non-best populations effectively. To reflect this , the

loss in a subset selection problem might be measured in several ways. The

criteria used in this paper are the following,

•~ . ~~~~~~~~~ •
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(2.3) i) Number of populations selected (S)

ii) Number of non-best populations selected CS’).

So the risk of a selection rule, R(0,cp), is given by i) the expected subset

size, E6(S~ç), or ii) the expected number of non-best populations selected ,

E0(S’ cp).

3. MINIMAX VALUES FOR LOSSES S AND S’. A selection rule cp E141,* is minilnax

with respect to S if

(3.1) sup E0(SJcp ) = inf sup E0(SIcp).6 —  A~,* e  —

The value on the right side of (3.1) 15 called the minimax value with respect

to S of the selection problem. Minimaxity with respect to 5’ is defined by

replacing S with S’ in (3.1).

Schaafsma (1969) considered minimaxity in multiple decision problems in a

very general setting. But he did not restrict attention to rules which satisfy
*

the P -condition. In this unrestricted problem he found that a minimax rule

(with respect to S or S’) never selects a subset consisting of more than one

population . This will certainly not be the case in the restricted minimaxity

of (3.1).

The following subset of the parameter space will be of interest In finding

the minimax values. Let €~ = {Oc€: O~€ for all i=l ,... ,k} where ~ denotes the

closure of A.

Theorem 3.1. Suppose €~ is non-empty. Suppose there exists such that

Pe(select iT 1 I cp)is uppersemicontinuous atO 0 fo: all c~i,~1,* and all i=l ,...,k.

Then the ininiinax value with respect to S is kP and the minimax value with

respect to S’ is (k-1)P .
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Proof. Let 
~~~~~~~~~~~~ 

denote the k-i non-best populations and the

best population at ~~~~~. Then the risks at are

k
(3.2) E8 (S~cp) = ~ P0 (select w . t cp)

-.0 1=1 —0 (i)

k-l
(3.3) E0 ( S ’ I cp )  = ~ P0 (select (.) I CP) .

The ”no data rule” defi:ed by ~~(~) 
~~~~, ,...,k, has Pe (select~~(j)k

*)

= P for all 0 and all i. So EØ (SJ q ) kP and E0(S’ cp ) = (k-l)P for all 2.
and the minimax values can be no greater than kP and (k-l)P respectively.

On the other hand, let 6(.) be the subset of € where v(~) is best. Since

• 2~c~~1). and P0 (select n (1) lc) is upper semicontinuous at

P8 (select ~r . I cp) > inf P (select ~ . k’)
(I)

= inf P
0(CSjcp) .IP

*

(1)

for any cfE~ p*. So

(3.4) sup E
0
(SIcp) > E0 

(51c) > kP
€ — -

~0

and

sup E0(S’~ cp) > E 0 (S’Iq) I (k~l)P
6 —  -O

fo~ any qz~~,*. Thus the minimax values can be no less than kP and (k-l)P

respectively. II

Remark 3.1. The hypothesis that is non-empty is usually satisfied. If

6 = IxIx...xI (k times) where I is an interval on the real line and if the

best is defined in terms of the largest or smallest coordinate of the parameter,

then = {0 = (0,0,...,O): 8c1}. If X has a multinomial distribution ,
— k

6 = ((O i,. .. ,Ok): 0. > 0, 
~ 
8. = 1). If the best population is the coordinate

1 1=1

associated with the largest or smallest coordinate of the parameter , then €.~ is

the single point (l/k ,...,l/k). It should be noted that i n  hoth of these
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examples , the determination of did not depend on which population was tagged L
as best in those cases where two or more of the coordinates were equal and

largest (or smallest). It may be argued that in problems like the above, any

action is acceptable to the experimenter if~~c€0. In this case, one would set

R(~ ,q~) = 0 for 0c60. But, even allowing this, Theorem 3.1 remains true, in the

usual (see Remark 3.2) case where P0 (select ir.~ ç) is continuous m O , for (3.4)
can be replaced by

sup E0(SJq~) 
> lim E

9(Slcp) 
> kP

and similarly for S’.

Remark 3.2. The upper semicontinuity assumption of Theorem 3.1 is much less

formidable than it appears. For example, Chung (1970) (problem 10, page 100)

can be generalized to state that if X has a density f(x;0) with respect to a

sigma finite measure p and if f(x;8) is continuous at ~~ (as a function of 0)

for almost all (p) x, then E6~
p(X) is continuous at ~~ for any bounded ~~~. Since

P9 (select ‘ r . Ic )  = E0cp.(X) and O < 1, this shows that P0 (select 1r
~
kp) will

be a continuous function of 0 on 6 for any q in any problem with densities

which are (almost everywhere) continuous in the parameter.

Theorem 3.1 indicates a relationship between minimaxity with respect to

S and S’. Theorem 3.2 shows that minimaxity with respect to S’ is more easily

achieved than minimaxity with respect to S.

Theorem 3.2. Under the assumptions of Theorem 3.1, if cp c is minimax with

respect to S, then 
~
p is minimax with respect to S’.

I
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Proof.

sup E9(S’Icp) = sup{E0(S~~)-P0(CS~cp)}
—

< sup{E0(S~cp)_P }
8 —

= kP~~P = (k-l)P . II
Theorems 3.1 and 3•.2 can be used to show that in location and scale

parameter problems, two rules proposed by Gupta (1965) are minimax . In the

following, we will consider the case in which the population associated with

the largest parameter value is best. With the appropriate modifications ,

analogous results could be obtained if the population associated with the

smallest parameter value is best.

Gupta (1965) proposed and studied the following two rules. For a

location parameter problem, define the rule R1 by

(3.5) R : select 11. if x. > max x. -d i=l ,. . . ,k1 1 ‘ l~j<k ~
*

where d > 0 i ‘lest constant such that the P -condition is satisfied .

For a scale •~1eter problem, define the rule R2 
by

(3.6) R : select it. if x. > c~ max x. i=l .,... ,k2 1 1 lu c k  ~
*

where 0 < c ~ 1 is the largest constant such that the P -condition is satisfied .

Theorem 3.3. Suppose Xl,...,Xk are independent. Suppose 0 is a location

(scale) parameter and X1 
has density f0 (x1) = f(x

~
_8

1)(f(x~
/O
~
)/B1) with

respect to Lebesgue measure, p, on the real line ((0,~ )). Suppose f9(x)

has monotone likelihood ratio. Then R1 (R2) is minimax with respect to S

and S’.

Proof. Gupta (1965) proved that under the assumptions of independence and

monotone likelihood ratio ,

sup E0(SIR 1 (R2)) = sup Ee(51R 1 (R2))  = kP .
6 — €0 — 

-
~~~~~~::~~L ~~~~~~~~~~~~~~~ —-• • -- • -~~~~~~-—--—
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The continuity assumption of Theorem 3.1 is satisfied for any location (scale)

parameter density with respect to Lebesgue measure (see Royden (1968) problem 17,

chapter 4). The result follows from Theorems 3.1 and 3.2.11

Theorem 3.3 generalizes a result of Gupta and Studden (1966). They proved

that R1 (R2) is minimax among all permutation invariant rules in Ip~~~~
. Theorem

3.3 proves minimaxity among all rules in

4. NECESSARY CONDITIONS FOR MINIMAXITY. Any minimax selection rule must

satisfy certain equalities on the set 0
~
. These necessary conditions are

principally of use in proving that certain rules, in violating these conditions,

are not minimax. Theorem 4.1 provides the necessary conditions for minimaxity

with respect to S and Theorem 4.2 the analogous conditions for S’.

Theorem 4.1. Let qbe a minimax rule with respect to S. Suppose

P0(select it~~q5) is upper semicontinuous for all i~l,...k at ~~~~~ Then

a) P8 (select 1r~ Icp ) = p* = inf P9(CS kp) for all i=l ,... ,k—0 6 —

b) P0 (CSk) = p = inf P0 (CS~q,~

c) E0 (SJcp) = kP = sup E9(Sk).—0 0 —

Remark 4.1. Condition (a) of Theorem 4.1 implies condition (b) and the first

equality in Cc) as well as (a) and the first equality in (b) of Theorem 4.2.

If one wishes to verify these conditions for a given rule to check if it mi ght

be minimax , only 4.1(a) need be verified.

Proof. As in the proof of Theorem 3.1, it follows that

(4.1) P0 (select ir~ kp) I p for all i=1 ,...,k.

_ _ _ _ _ _ _ _ _ _

_
• •• • • • • •
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By considering the “no data rule” cp (x) P . it follows that the minimax value

is no greater than kP so , since cp is minimax and (4.1) is true,

kP > sup P0(SIcp) > E0 (S l c p )
6 — —0
k 

*= ~ P0 (select 7T
1 J Cp) ~ 

kP
i=1 —0

All the inequalities are equalities and (a) and (c) are true. (b) follows fro”i

(a) since P0(CSICp) = P0 (select rr .Icp ) were
- -O

Nagel (1970) found that a condition related to 4.1(b), viz.,

inf P0(CSfcp) = inf P9(CSIcp),6 -

was an important property of just selection rules. Conditions 4.1(a) and (b)

have long been recognized (cf. Gupta and Studden (1966)) as intuitively

appealing properties of selection rules. This is especially true for those

problems in which 8.~ consists of those parameter points at which one of the k

populations has arbitrarily been tagged as best, e.g., a location or scale

parameter problem in which best has been defined in terms of the largest or

smallest parameter. Theorem 4.1 verifies that, in terms of minimaxity

considerations, the intuition is justified.

Theorem 4.2. Let cp be a minimax rule with respect to S’. Suppose

P0(select 7T .Icp ) is upper semicontinuous for all i=l ,. ..,k at Z~
%. Then

a) P0 (select i r.j q )  = p* = inf P0(CSIq,) for all i=1 ,...,k, i~j, where ~~c€ .
—0 6 —

b) E8 ( s ’j q)  =(k_l)P* = sup E 0 ( S ’I c p ) .
—0 6 —

Proof. Similar to Theorem 4. 1 .11
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Remark 4.2. For those problems in which the random variables Xl,...,Xk 
are

exchangeable f o r  and the rule ~ is invariant under permutations (symmetric) ,

the follow ing is true for any

P8 (select ir
1 l c ~) = P

0 
(select ir2 Ic ~) =. ..= P0 (select TT

k k ) .

!n such a problem , then , 4.2(a) implies 4.1(a) and (b). So for these problems ,

the necessary conditions in Theorem 4.1 and those in Theorem 4.2 are essentially

the same.

Remark 4.3. Santner (1975) gives conditions under which sup E0(Sjcf) =
6 —

sup E
0(SI

c~) (sup E8(S’k) = sup E0(S’J cf)) which from Theorem 4.1(c) (4.2(b))

is a necessary condition for minimaxity.

In the followi ng three examples , rules which have been proposed by other

authors for various problems will be examined. In all cases, the bes t

population is the one associated with the largest parameter value. In all cases

the continuity assumptions of Theorems 4.1 and 4.2 are satisfied for all ~~c6

since the dens it ies (or probabil ity mass functions) are con tinuous functions of

the parameter (see Remark 3.2).

Example 4.1. Consider the multinomial selection problem in which the cell

associated with the largest cell probability is best. Here 6o = ( l/k ,...,1/k).

Gupta and Nagel (1967) proposed using the rule R 1 (see (3.5)) for this problem.

They found that for some values of k and P , the inf P0(CS1R 1
) d id not occur at

6 —
( l/k ,...,l/k). So 4.1(b) and 4.2(a) are violated and R

1 
is not minimax with

respect to S or S’ for these values of k and P 

---- ---- -•-~-
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Example 4.2. Consider the binomial selection problem in which XlJ...,Xk are F
independent binomial random variables with success probabilities °l’

=
~~~~~

= 0
k 

= ~~, ° ~ u 1}. Gupta and Sobel (1960) proposed

using the rule R1 (see (3.5)) to select a subset including the population

associated with the largest 8~ • These authors realized that E0(SIR 1) was not

constant on 6~, as required by 4.1(c) if R1 were to be minimax . Indeed ,

E0(S~R1) 
-

~~ k as O~~ (1 ,...,l) and E9(S’1R 1) 
-

~ (k-l). The same is true for

the arcsin transformation proposed by these authors.

Example 4.3. The following general problem has been considered by Gupta and

Panchapakesan (1972). Suppose 
~~~~ 

.,ltk 
are independent populations with

absolutely continuous distributions F0 (xi) where O~cI (an interval on the real

line). The family ~F0
: OcI )  is assumed to be stochastically increasing in 0.

Gupta and Panchapakesan investigated a class of procedures for selecting a

subset containing the population associated with the largest 0~ defined by:

(4.2) Rh: select it. iff h(x.) > max
1 1 1~j<k ~

where h is a real valued function satisfying certain regularity conditions.

= {(0,...,0): OcI}. For any ~ = (0,...,8)e00 and i=l ,...,k,

(4.3) P
0 

(select lv i I R h) = f F~~
1 (h(x))dF0(x).

By Theorems 4.1 and 4.2, if the procedure Rh is to be minimax with respect to

S or S’, (4.3) must be constant on €~. But Gupta and Panchapakesan have

found conditions under which (4.3) will be strictly increasing in 0. Gupta

and Studden (1970) have established the strict monotonicity of (4.3) for the

non-central x2 and non-central F distributions when Rh is R2 (see (3.6)).

This is of interest in the problem of selection in terms of Mahalanobis

distance for multivariate normal distributions. Gupta and Panchapakesan (1969)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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have established the strict monotonicity of (4.3) in the problem of selection

in terms of the largest (or smallest) multiple correlation coefficient when Rh
is R2 (or an analogous rule). Both the conditional and unconditional cases

were considered as well as two different statistics, R2, the sample multiple

*2 2 2correlation coefficient, and R = R /(1-R ). In violating Theorems 4.1(a)

and 4.2(a), all of the above rules are not minimax with respect to S or S’.

Remark 4.3. The fact that the above rules are not minimax was previously

reported in some cases. But the interesting point is that one need not

always examine E0(S~q) or E0(S’Ip ) to determine that a rule is not minimax.

Often in investigating the least favorable configuration, i.e., that for

which P0 (CSICp) = inf P0(CSI q), one can reduce the problem .o investigating
-O 6 —

inf P0(CS~cp). This, for example , is the case for just rules as defined by€0 
—

Nagel (1970) and Gupta and Nagel (1971). If one finds that P0(CSICp) is not

constant on % (and some mild continuity assumptions are satisfied), then R

is not minimax . Thus, the only analysis required, to show that a proposal rule

is not minimax , may be the analysis used to find the least favorable

configuration.

5. MINIMAXITY CONSIDERATIONS FOR SEAL’S CLASS. Seal (1955) proposed a class

of rules for the location parameter problem. The rules were proposed for the

independent normal populations problem but might reasonably be used in any

location problem. In this section , a lower bound is obtained for sup E0(SIcp)
6 —

and sup E0(s’I cc) for rules in this class. This lower bound is then used to
0 —

prove that, in certain cases, the rules in this class are not minimax.
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Definition 5.1. Let ~~~
‘ denote the class of selection rules having the form:

k- 1
select it. iff x1 

> 
~ 

a.xr.1 -d
— j=l ~ II

where x
111 ~~~ X[k ll are the ordered observations excluding x1 , a. 

are

k-i
non-negative constants with ~ a. = 1, and d is the smallest positive constant

j=l ~
*for which the P -condition is satisfied.

R1 (see (3.5)) is in ¶~ and corresponds to setting ak l =l , a~=0~~=i~ . . ., k-2.

Comparisons between E0(SJR 1) and E0(SIq) for certain other rules, ~~~~ have

previously been made by Seal (1957) and Deely and Gupta (1968). These authors

considered specific parameter configurations (e.g., slippage configurations)

and specific alternatives to R1. In the following results , the sup over all

parameter configurations and all rules in ~~ are considered. But , as have the

previous authors’ works, these results shed some favorable light on R1.

Throughout this section 1 it will be assumed that e = ii~~. The c.d.f. of X

is F(x-0). The following notation will be used. 
~~~ 

u-••u 0[k] will denote
the ordered coordinates of 0 = 9k~ 

so that the best population is the

-~unknown) one associated with 0[k]~ 
Sometimes, a sequence of parameter points

> will be considered in which case 8 <.• . < 0 will denote then nil]— — n[k]

ordered coordinates of 
~n 

= 

~
0nl’”’8nk~

Theorem 5.1 will be used to obtain a lower bound on the expected subset

size. As stated, it also points out an intuitively undesirable property of all

rules in ~~~
‘
, except R1, namely, there exist parameter points such that

0[k] °rk_ 1] is arbitrarily large but the probability of including 
the

population associated with °[k-1J 
in the selected subset is arbitrarily near

one.

Theorem 5.1. Let ç c ~‘\{R 1}. Let r=inin ~i: a. > 0). Then there exists a

sequence of parameter points <
~~~~~

> and a subset Kc{l ,.. - ,k) of size k-r-l such

that for i c K , u r n  0n[kJ~
0 =°° and lim P0 (select it

i
)
a~~

]
~n-*~ n-~ —ct —

- -• 
A ~~~~~~~~~~~~~~~~~~~~
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Remark 6.1. For 
~a 

= R1, k-r-l=0 so the theorem is vacuously true for R1 also.

For any CPa ~ R1, r u k-2 so K will be non-empty.
k-I

Proof. Let S. = {x: x1 ~ ~ 
a.xr.]-d} be the selection region for it~ using

j=l 3 Li

Define a sequence of subsets of Zby

(5.1) A~ = {x: 2n I xk > n, n x. > -d, j=r+l ,r+2,.. . ,k-l ,

c l~~1~ 
i=l ,2,. . .,r)

where c = (-n-2n ak l )/ar.

Let K = {r+l,.. . ,k-l). First it will be shown that A~cS. for all jcK ,

for all large n. Since ak l  1 0 and ar > 0, cn < _ nf a r < -d for all large n.

Fix such an n and jcK. Let x c A~. Then x[k_ ll 
= Xk, {X [r+l]~~ •~

X [k_2] } =

{Xr+li~~ 
.,Xk l }\{Xj} (this set is empty if r=k-2) and {X[l]~ ...~ X

ET]
} =

{x1,... ,x}. Using these facts and (5.1), (5.2) and (5.3) are obvious.

(5.2) ak i  X Ik i] ~ ar X[r] 
< ak 1 2n + arc = -n

(5.3) 
m=r:l 

amx[ml u rnax
~
xEr+l]~

...)x[k 2]
} 
~~

Using (5.2), (5.3) and the fact that am = 0 m=l ,. . .,r-l it follows that

k-i k-i .

(5.4) 
~ 

amx[rn]
_d = 

~ 
a~x1~~

_d < -n+n-d = -d.
m=l m=r

But x
3 

> -d by (5.1) 50 xcS.. This is true for any x e An so A~ CS. for all

j c K.

Define a sequence of parameter points 
~~ 

= 

~
0nl’ ‘0nk~ 

by

3n12 j = k

(5.5) 0
n3 

= n/2 j = r+1,...,k-l

cn n j l ,...,r

For any j £ K , u r n  0n[k] 
- 0nj = u r n  (3n/2-n/2) =

n-~~

____________________ ~~~~.—--- - -—•- ~—-~~~ —---~~~•-- -~—-—.j
-- ---
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P8 (A~) = P0(A-~~)

(5.6) = P(n/2 I 
~k 

> -n12 , n/2 I > -n/2-d ,

j = r+l,...,k—l , n 
~ 
Y
~ 

> —
~~~~, i=l ,...,r)

where Y = (Y1,... ‘~k~ 
has c.d.f. F(~). (5.6) converges to 1 as n-~ since all

the limits converge to ~ or -
~~~ as appropriate. Since A~ C S3 

for all j ~ K ,
( 5 .7 )  u r n  P

8 
(select 

~~~~~ 
= u r n  P9 (Si

) 
~ 

Urn P9 (Ar) = 1
n-~ —n — n-~ —i~ tr~ -n

for all j c K. Il

Theore*~ 5.2. Let cp c ~~~~ . Let r=rnin {i: a. ~ O}. Th en

a) sup E0 
(S~c p )  Ik-r

6 —  —

b) sup E0 (S’k ’a) > k-r-l .
0 —  —

Proof. If CP = R1, k-r=l and k-r=0 so (a) and (b) are obviously true.

For any c S~’\{R
1
}, using the notation defined in the proof of

Theorem 5.1 we have

sup E9 (SIcp ) 
~ 

lim 
~~ 

(SJp )
€ — — n-+.~ -i~

k
(5.8) ~ u r n  ~ P0 (select ‘

~rn
1%~

~~~~~~~ m=r+l —n —

Theorem 5.1 proved the first k-r-l terms converge to one in the limit. For

every x c A , xk is the largest coordinate 
so A~ CSk for every n. Thus (5.7)

holds with j=k. Hence the bound k-r for (a).

From (5.5), itk is the best population 
for all 8. Thus using the same

reasoning as above, excluding the term P9 (select lTk l C Pa) in (5.8), yields the

bound k-r-1 for (b).JJ

J 

Corollary 5.1. Let ~ .~d’\{R1}. Let r minti : a
~ 

> 0). Then

(a) if p* < (k-r)/k, cp~ is not minimax with respect to S

(b) if P < (k-r-l)/(k-l), 
~a 

is not minimax with respect to S’.

-~~ ~~~~~~~~~~~~~~~~ - ----~-- --- - -~~ ---~--—•-•- - • — • - —— ---•—---—--——---•



16

Proof. The “no data ru le”, cp~(~.) = p has sup E8 (S~cp ) = kP < k-r < sup
6 -  €

E0 (S!cpa). Hence (a) is true. (b) is analogous.I~

Corollary 5.2. (a) If P < 2/k, no rule in .~‘\{R1) is minimax with respect

to S. (b) If P < l/Ck-u) , no rule in ~‘\{R1) is minimax with respect to 5’.

Proof. Any rule in ~‘\{R1} has r 
< k-2. So the smallest upper bound in

Corollary 5.1(a) is 2/k. Hence (a) is true. (b) is anaiogous.~~
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